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Exercice 1 : Valeurs moyennes des observables

1. La moyenne de x est donnée par :

〈x̂〉 =

∫ +∞

−∞
dxψ∗(x)x̂ψ(x) =

∫ +∞

−∞
dx |ψ(x)|2x =

1√
2πσ2

∫ +∞

−∞
dxe

−x2
2σ2 x = 0

car la fonction dans l’intervalle est impaire sous inversion x→ −x
2. La moyenne de p est donnée par :

〈p̂〉 =

∫ +∞

−∞
dxψ∗(x)p̂ψ(x) = −i~

∫ +∞

−∞
dxψ∗(x)

dψ(x)

dx
=
−i~√
2πσ2

∫ +∞

−∞
dxe−

x2

4σ2
−ikx(ik− x

2σ2
)e−

x2

4σ2
+ikx

= − i~√
2πσ2

∫ ∞
−∞

dx
(
ik − x

2σ2

)
e−

x2

2σ2

Le terme propre à x donne de nouveau zéro. Reste le terme propre à k.

=
k~√
2πσ2

∫ +∞

−∞
dxe−

x2

2σ2

Posons
x2

2σ2
= y2, dx =

√
2σ2dy

=
k~√
2πσ2

√
2σ2

∫ +∞

−∞
dye−y

2

= ~k
√
π√
π

= ~k

3. L’écart type ∆x est défini comme :

∆x =
√
< x̂2 > − < x̂ >2 =

√
< x̂2 >

< x̂2 >=

∫ +∞

−∞
dx|ψ(x)|2x2 =

1√
2πσ2

∫ +∞

−∞
dxx2e

−x2
2σ2
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Posons x2

2σ2 = y2, x2 = 2σ2y2 et dx =
√

2σ2dy

< x̂2 >=
1√

2πσ2

√
2σ22σ2

∫ +∞

−∞
dyy2e−y

2

=
2σ2

√
π

√
π

2
= σ2

∆x =
√
< x̂2 > = σ

4. L’écart-type ∆p est donnée par :

∆p =
√
< p̂2 > − < p >2

Il faut calculer < p̂2 > :

< p̂2 >=

∫ +∞

−∞
dxψ∗(x)p̂2ψ(x) = −~2

∫ +∞

−∞
dxψ∗(x)

d2ψ(x)

dx2
= − ~2√

2πσ2

∫ ∞
−∞

dxe−
x2

4σ2
−ikx d

2

dx2
e−

x2

4σ2
+ikx

La dérivée est donnée par :

d2

dx2
e−

x2

4σ2
+ikx = d

dx

[(
ik − x

2σ2

)
e−

x2

4σ2
+ikx

]
=
[
− 1

2σ2 +
(
ik − x

2σ2

)2]
e−

x2

4σ2
+ikx

Donc
〈
p̂2
〉

= − ~2√
2πσ2

∫ ∞
−∞

dx

(
x2

4σ4
− ikx

σ2
− k2 − 1

2σ2

)
e−

x2

2σ2

Comme avant, le terme propre a x donne zéro, les deux autres termes sont :

〈
p̂2
〉

=
~2√
2πσ2

[(
k2 +

1

2σ2

)√
2πσ2 −

√
2σ22σ2

4σ4

√
π

2

]

= ~2k2 +
~2

2σ2
− ~2

4σ2
= ~2k2 +

~2

4σ2

∆p =
√
< p̂2 > − < p̂ >2 =

~
2σ

5. Le produit d’incertitude est donc :

∆x∆p = σ
~
2σ

=
~
2

qui correspond exactement à la limite fixée par le principe d’incertitude. L’état en question
est un paquet d’onde avec une impulsion moyenne p = ~k et avec incertitude minimale.

Exercice 2 : Problème inverse

1. Pour calculer le potentiel U(x), sachant que ψ(x) est une solution propre, il faut simplement
inverser l’équation de Schrödinger :
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− ~2

2m

d2ψ(x)

dx2
+ U(x)ψ(x) = Eψ(x)

U(x) = E +
~2

2m

1

ψ(x)

d2ψ(x)

dx2

Calculons la dérivée
d2

dx2
e−αx

2

=
d

dx

(
−2αxe−αx

2
)

=
(
−2α + 4α2x2

)
e−α

2x2

Remplaçons dans l’expression pour U(x) (on voit qu’un éventuel facteur multiplicatif se sim-
plifie entre d2ψ(x)

dx2
et ψ(x)).

U(x) = E +
~2

2m

(
4α2x2 − 2α

)
= E − ~2α

m
+

2~2α2

m
x2

2. Il s’agit du potentiel harmonique U(x) ∝ x2, à moins d’une constante additive.
3. On voit que la valeur de E n’est pas déterminée. C’est parce que le problème est le même

si on ajoute au potentiel U(x) une constante arbitraire. En particulier la fonction d’onde
ψ(x) solution de l’équation de Schrödinger ne dépend pas d’une constante additive dans le
potentiel. Physiquement, la dynamique d’un oscillateur harmonique est la même indépend.
d’une telle constante, c’est vrai aussi en physique classique.

Exercice 3 : Etat fondamental d’un puits de potentiel

1. Posons les conditions au bord en x = −L
2
. La condition de continuité de la fonction donne :

Ae−CL/2 = F cos

(
k
L

2

)
Pour celle sur la dérivée, il faut d’abord calculer les dérivées

d
dx
AeCx = ACeCx

d
dx
F cos(kx) = −kF sin(kx)

Et la condition en x = −L/2 donne :

CAe−CL/2 = +kF sin

(
k
L

2

)
Divisons la deuxième équation par la première.

C = k tan

(
k
L

2

)
qui est une équation pour E, car C et k sont fonctions de E.
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2. Faisons des petites manipulations de l’équation obtenue. Prenons le carré :

C2 = k2 tan2

(
k
L

2

)
( pour ça il faut d’abord supposer tan

(
kL

2

)
> 0, ce qui sera le cas ici)

2m
~2 (U − E) = 2m

~2 E tan2
(
kL
2

)
k20 − k2 = k2 tan2

(
kL
2

)
où nous avons défini k0 =

√
2mU
~2

k20
k2

= 1 + tan2

(
k
L

2

)
=

1

cos2
(
kL

2

)
Nous pouvons prendre maintenant la racine carrée, en supposant cos

(
kL
2

)
> 0.

k

k0
= cos

kL

2

Cette équation est dite transcendante et n’a pas de solutions analytiques (c’est à dire qu’on
peut écrire sur une feuille de papier).
Cependant, nous pouvons déduire graphiquement les propriétés de la solution. Faisons un
plot des deux côtés de l’équation. On voit tout de suite que, pour toute valeur de k0, et donc
de U, les deux courbes sont obligées de se croiser, donc une solution existe toujours.

Figure 1
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3. Dans la limite U → 0 on a que E < U et donc E → 0. Donc k → 0. Pour kL
2
→ 0 on a

cos
(
kL

2

)
→ 1. Les deux courbes doivent donc se croiser pour :

cos

(
kL

2

)
' 1

ce qui implique k
k0

= 1 et k = k0, donc E = U . On peut calculer la première correction à
E = U .
Faisons l’expansion limite de cos(x) pour x→ 0 et gardons le terme O (x2).

cos

(
k
L

2

)
' 1− k2L2

8

On a donc

1− k2L2

8
=

k

k0

k2
L2

8
+
k

k0
− 1 = 0

k =
− 1
k0
±
√

1
k20

+ L2

2

L2/4

= − 1

k0
+

1

k0

√
1 + k20

L2

2

Utilisons

√
1 + x = 1 +

x

2
− x2

8

=
− 1
k0

+ 1
k0

+ k0
L2

4
− k30L

4

32

L2/4

= k0

(
1− k20L

2

8

)
< k0 (E < U)

4. Dans la limite U → ∞ on a k0 → ∞. Donc la dérivée de la droite dans la figure est zéro et
le croisement a lieu en kL

2
= π

2
.

kL = π

k =
π

L

E =
~2

2m

π2

L2

C’est en effet l’énergie propre du problème avec barrière infinie et puits de largeur L.
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