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Exercice 1 : Valeurs moyennes des observables

1. La moyenne de x est donnée par :
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car la fonction dans l'intervalle est impaire sous inversion x — —x

2. La moyenne de p est donnée par :
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Le terme propre a x donne de nouveau zéro. Reste le terme propre a k.
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3. L’écart type Ax est défini comme :
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Posons 22 =12, 2% = 20%9y? et dov = V202%dy
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4. L’écart-type Ap est donnée par :

Ap=+/<p?>—<p>2

Il faut calculer < p* > :
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La dérivée est donnée par :
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Comme avant, le terme propre a x donne zéro, les deux autres termes sont :
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5. Le produit d’incertitude est donc :
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qui correspond exactement & la limite fixée par le principe d’incertitude. L’état en question
est un paquet d’onde avec une impulsion moyenne p = hk et avec incertitude minimale.

Exercice 2 : Probléme inverse

1. Pour calculer le potentiel U(z), sachant que 1(z) est une solution propre, il faut simplement
inverser I’équation de Schrodinger :
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+U(2)Y(z) = EY(z)
o1 d*(x)

Ulz) =B+ omip(z) da?

Calculons la dérivée
d? e d = o?
@e = e <—20z:z:e )
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Remplagons dans 'expression pour U(z) (on voit qu’un éventuel facteur multiplicatif se sim-
2
plifie entre ddﬁ# et ¥(z)).
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2. Tl s’agit du potentiel harmonique U(z) oc 22, & moins d’une constante additive.

3. On voit que la valeur de E n’est pas déterminée. C’est parce que le probléme est le méme
si on ajoute au potentiel U(z) une constante arbitraire. En particulier la fonction d’onde
1 (x) solution de I’équation de Schrodinger ne dépend pas d’une constante additive dans le
potentiel. Physiquement, la dynamique d’un oscillateur harmonique est la méme indépend.
d’une telle constante, c’est vrai aussi en physique classique.

Exercice 3 : Etat fondamental d’un puits de potentiel

1. Posons les conditions au bord en z = —%. La condition de continuité de la fonction donne :

L
Ae L2 — Fcos (k‘E)

Pour celle sur la dérivée, il faut d’abord calculer les dérivées

d%AeC’C = ACe®
L F cos(kx) = —kF sin(kz)

Et la condition en z = —L/2 donne :
—cL)2 : L
CAe = +kF sin /{;5
Divisons la deuxiéme équation par la premiére.

L
C = ktan (sz)

qui est une équation pour E, car C et k sont fonctions de E.
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2. Faisons des petites manipulations de I’équation obtenue. Prenons le carré :

C? = k? tan® (k:g)

( pour ¢a il faut d’abord supposer tan (l{:%) > 0, ce qui sera le cas ici)

20U — E) = 22 E tan® (L)
kg — k* = k* tan? (L)

2

oll nous avons défini ky = QZQU
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Nous pouvons prendre maintenant la racine carrée, en supposant COS(%) > 0.

k kL

% = 08—~
Cette équation est dite transcendante et n’a pas de solutions analytiques (c’est & dire qu’on
peut écrire sur une feuille de papier).
Cependant, nous pouvons déduire graphiquement les propriétés de la solution. Faisons un
plot des deux cotés de I’équation. On voit tout de suite que, pour toute valeur de kg, et donc
de U, les deux courbes sont obligées de se croiser, donc une solution existe toujours.
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3. Dans la limite U — 0 on a que £ < U et donc £ — 0. Donc k — 0. Pour ké — 0 on a
cos (l{;%) — 1. Les deux courbes doivent donc se croiser pour :
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ce qui implique w = Let k = ko, donc E = U. On peut calculer la premiére correction a
E=U.

Faisons Iexpansion limite de cos(z) pour  — 0 et gardons le terme O (z?).
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4. Dans la limite U — oo on a kg — oo. Donc la dérivée de la droite dans la figure est zéro et

le croisement a lieu en k% = g

kL =7
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C’est en effet ’énergie propre du probléme avec barriére infinie et puits de largeur L.



